
Editor Shortcuts
This one’s only new to those of us who haven’t scoured
the Help pages with a fine tooth comb. I’m sure all those
Delphi users who can’t look at the screen at the same
time as typing know that feeling of horror when they
realise they’ve typed a large section of code with Caps
Lock on. The case of every letter for the last few lines
is wrong, and it all needs to be deleted and re-typed...

Well, no longer! Delphi to the rescue as usual. The
Delphi editor is very flexible and has many keyboard
combinations that do useful things. In this case, there
is a keyboard shortcut for toggling the case of a marked
block: Ctrl-O, U (or Ctrl-O, Ctrl-U). This, and many
other shortcuts that can be used in the editor as well
as in the form designer and the Object Inspector
(although the latter aren’t documented very accu-
rately), can be found in the large number of topics that
show up if you choose Help | Topic Search, type in
“shortcuts” and press Enter. One or two other invalu-
able keyboard commands are column block marking
(Ctrl-O, C) and insert compiler options at top of source
file (Ctrl-O, O).

Contributed by Brian Long (whose email address is
76004.3437@compuserve.com)

Nick’s Favourite Tips
Customize your toolbar. Expand the toolbar by placing
the cursor over its right edge and dragging it open.
Right click on the toolbar and select Configure... Drag
and drop all the buttons you want onto the toolbar.

Quicker loading. If you don’t plan on using OLE, save
a lot of time loading up Delphi by removing the OLE 2.0
container from your component palette. When the
TOLEComponent is installed and Delphi starts up, it must
‘check in’ with the OLE DLLs, slowing down start up.
Go to Options|Install Components on the menu bar.

Select OLEReg from the left listbox, and then
TOleContainer from the listbox on the right. Press the
Remove button and then Ok. Delphi will recompile the
COMPLIB.DCL file and the OLE container will no longer
be installed. Of course, you can reverse the procedure
to reinstall it should you ever want the OLE component
back on your palette.

Shrink the size of your executables! Open up
Options|Project from the menu bar. Select the Linker
page. Check the Optimize for Size and Load Time
Checkbox. This will shrink your .EXE size by as much
as 25%. If your system has a hard time with this feature,
as some do, use the command line utility W8LOSS.EXE,
found in the \DELPHI\BIN directory. I recommend only
doing this for a final version of your applications, as it
does add a few seconds to the compile time.

Use the cool routines in the FMXUTILS.PAS file in
directory \DELPHI\DEMOS\DOC\FILMANEX. There are
some very handy routines to copy, move and execute
files, among others.

Add the demo program Image Viewer to your tools
palette. Open the file IMAGVIEW.DPR in the directory
\DELPHI\DEMOS\IMAGVIEW and compile it. Use the
Options|Menu dialog box to add it tool your tool bar.
Image View will allow you to quickly try out BitButtons
and SpeedButtons, the large bitmap gallery that comes
with Delphi in \DELPHI\IMAGES\BUTTONS.

Contributed by Nick Hodges (whose email address is:
71563.2250@compuserve.com)

Passing Variable Numbers Of Parameters
A couple of neat Delphi features now make it possible
to write procedures and functions that pass a variable
number of parameters (just like WriteLn has been able
to do in Pascal for ages). The first thing which makes
this possible is Delphi’s support for passing open
arrays – ie arrays where the number of elements in the
array is not defined in the procedure or function
declaration, eg:

Procedure TestMultiPar(
 const Args: array of const);

The second ingredient is the TVarRec type defined in the
System unit (see Listing 1) and the fact that array of
const is treated by the compiler just like array of
TVarRec. When we use this in passing parameters to a
procedure or function, eg:

Procedure TestMultiPar(
 const Args: array of const);

the compiler looks at the parameters and builds the
array directly on the stack. For each item in the array
it also sets the VType field to one of the pre-defined
constants vtXXXX (see Listing 1). The actual value is
always sent as four bytes of information. For the
Boolean and Char types, only the first byte contains
useful information.

This is your column! Here is your opportunity to
share with your fellow Delphi enthusiasts those
hard-won hints and helps that make your life
easier day by day. We have a similar column in our
sister publication, The Pascal Magazine, and it is
one which readers constantly comment on as
being especially useful. Please do send in your Tips
& Tricks to us (preferably by email), whether large
or small, on any aspect of Delphi or related issues.

Tips
& Tricks

July 1995 The Delphi Magazine 37

program VarPar;
uses WinCrt, SysUtils;
const
 TypeNames : array [vtInteger..vtClass] of PChar =
 (’Integer’, ’Boolean’, ’Char’, ’Extended’,
 ’String’, ’Pointer’, ’PChar’, ’Object’, ’Class’);
function PtrToHex(P: pointer): string;
begin
 Result :=
 IntToHex(Seg(P^), 4) + ’:’ + IntToHex(Ofs(P^), 4);
end;
procedure TestMultiPar(const Args: array of const);
var
 ArgsTyped : array [0..$fff0 div sizeof(TVarRec)] of
 TVarRec absolute Args;
 i : integer;
begin
 for i := Low(Args) to High(Args) do
 with ArgsTyped[i] do begin
 Write(’Args[’, i, ’] : ’,
 TypeNames[VType], ’ = ’);
 case VType of
 vtInteger: writeln(VInteger);
 vtBoolean: writeln(VBoolean);
 vtChar: writeln(VChar);
 vtExtended: writeln(VExtended^:0:4);
 vtString: writeln(VString^);
 vtPointer: writeln(PtrToHex(VPointer));
 vtPChar: writeln(VPChar);
 vtObject:
 writeln(PtrToHex(Pointer(VObject)));
 vtClass:
 writeln(PtrToHex(Pointer(VClass)));
 end;
 end;
end;
var
 MyObj : TObject;
begin
 MyObj := TObject.Create;
 TestMultiPar([123, 45.67, PChar(’ASCIIZ’),
 ’Hello, world!’, true, ’X’, @ShortDayNames,
 TObject, MyObj]);
 MyObj.Free;
 { To verify that the type-safety is used try this: }
 writeln(Format(’%d’, [’hi’]));
 { The supplied parameter is not of the type expected.
 The ’%d’ format string signals that the parameter
 should be an integer value, but instead we send a
 string. At run-time this will generate an exception
 and if you have enabled IDE-trapping of exceptions,
 Delphi will show you the offending line. Using c-type
 sprintf functions like this will result in undefined
 behaviour (read: system crash, GP or whatever) }
end.

➤ Listing 2

So, go ahead, now you can write all those neat rou-
tines with variable numbers of parameters – and still
retain type safety! Listing 2 contains a simple example
program to demonstrate the technique.

Contributed by Hallvard Vassbotn, whose email
address is: hallvard@falcon.no

Exporting Classes From DLLs
By fooling around with the compiler and some ideas
from the Borland C++ manuals, I discovered a way to
export classes from a DLL. This is, as far as I know, not
documented by Borland anywhere.

The new Delphi classes are very similar to C++
classes. Microsoft’s COM and OLE2 technology is very
dependent on this class model; what MS calls an inter-
face in OLE2 is really a pointer to a Delphi-style VMT!

I was also inspired by some interface code that can
be found in DELPHI\DOC\OLE2.INT. Look at these
funny declarations:

{ IUnknown Interface }
IUnknown = class
 public
 function QueryInterface(iid: REFIID;
 var Obj: Pointer): HResult; virtual;
 cdecl; export; abstract;
 function AddRef: Longint; virtual;
 cdecl; export; abstract;
 function Release: Longint; virtual;
 cdecl; export; abstract;
end;

Have you ever seen methods being declared as
virtual; cdecl; export; abstract; before? Well no,
neither had I. All the class declarations in OLE2.INT
have a purely abstract interface. In addition the
methods use the ‘C’ calling convention and include
special prolog code to allow the methods to be called
from another executable, ie from a running EXE
program to a dynamically loaded DLL.

With this in mind and after some experimentation, I
managed to export a class from a DLL and use it in a
program.

The unit MyObj (Listing 3) supports three different
compilations. If EXPORT is defined, it declares and imple-
ments the class and function for export from a DLL. If
IMPORT is defined it only declares the class and imports
the function from the ObjDll DLL (shown in Listing 4).
Otherwise, it compiles all code and links it directly into
the executable.

Listing 5 shows a small test program. When compil-
ing the DLL (Listing 4), define EXPORT and rebuild the
project. When compiling the test program (Listing 5),
define IMPORT and then rebuild the project.

There are some basic rules that must be followed
when exporting classes from a DLL. All methods to be
used must be virtual (or dynamic). When declaring
variables of the class, use the declared type. When

const
 vtInteger = 0;
 vtBoolean = 1;
 vtChar = 2;
 vtExtended = 3;
 vtString = 4;
 vtPointer = 5;
 vtPChar = 6;
 vtObject = 7;
 vtClass = 8;
type
 TVarRec = record
 case Integer of
 vtInteger: (VInteger: Longint; VType: Byte);
 vtBoolean: (VBoolean: Boolean);
 vtChar: (VChar: Char);
 vtExtended: (VExtended: PExtended);
 vtString: (VString: PString);
 vtPointer: (VPointer: Pointer);
 vtPChar: (VPChar: PChar);
 vtObject: (VObject: TObject);
 vtClass: (VClass: TClass);
 end;

➤ Listing 1

38 The Delphi Magazine Issue 2

unit MyObj;
interface
{$IFNDEF EXPORT}
 {$IFNDEF IMPORT}
 {$DEFINE NORMAL}
 {$ENDIF}
{$ENDIF}
type
 TMyObject = class(TObject)
 private
 FProp : integer;
 procedure SetProp(Value: integer); virtual;
 {$IFNDEF NORMAL} export; {$ENDIF}
 {$IFDEF IMPORT} abstract; {$ENDIF}
 public
 constructor Create; virtual;
 {$IFNDEF NORMAL} export; {$ENDIF}
 {$IFDEF IMPORT} abstract; {$ENDIF}
 destructor Destroy; virtual;
 {$IFNDEF NORMAL} export; {$ENDIF}
 {$IFDEF IMPORT} abstract; {$ENDIF}
 procedure Free; virtual;
 {$IFNDEF NORMAL} export; {$ENDIF}
 {$IFDEF IMPORT} abstract; {$ENDIF}
 procedure TestIt; virtual;
 {$IFNDEF NORMAL} export; {$ENDIF}
 {$IFDEF IMPORT} abstract; {$ENDIF}
 property Prop: integer read FProp write SetProp;
 end;
 TMyObjectClass = class of TMyObject;

function _TMyObject: TMyObjectClass;
 {$IFDEF EXPORT} export; {$ENDIF}

implementation
uses WinProcs;

{$IFNDEF IMPORT}
constructor TMyObject.Create;
begin
 inherited Create; { Call non-virtual TObject.Create }
 FProp := 1;
end;
destructor TMyObject.Destroy;
begin
 inherited Destroy; {Call virtual destructor TObject.Destroy }
end;
procedure TMyObject.Free;
begin
 { if Self = nil, then we wouldn’t be here in the first place }
 Destroy;
end;
procedure TMyObject.TestIt;
var i : integer;
begin
 for i := 1 to FProp do WinProcs.MessageBeep(0);
end;
procedure TMyObject.SetProp(Value: integer);
begin
 if Value > 10 then FProp := 10
 else FProp := Value;
end;
{$ENDIF}

function _TMyObject: TMyObjectClass;
{$IFDEF IMPORT}
 external ’OBJDLL’ index 1;
{$ELSE}
begin
 Result := TMyObject;
end;
{$ENDIF}
end.

➤ Listing 3

July 1995 The Delphi Magazine 39

program TestObj;
uses
 MyObj, WinCrt;
var
 T : TMyObject;
 P : integer;
begin
 T := _TMyObject.Create;
 try
 repeat
 writeln(’Enter a value for property: ’);
 readln(P);
 T.Prop := P;
 T.TestIt;
 until P = 0;
 finally
 T.Free;
 DoneWinCrt;
 end;
end.

➤ Listing 5

library ObjDll;
uses MyObj, WinProcs;
exports
 _TMyObject index 1;
begin
end.

➤ Listing 4

unit DbGridFx;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
 Graphics, Controls, Forms, Dialogs, Grids, DBGrids;
type
 TDBGridFix = class(TDBGrid)
 private
 { Private declarations }
 procedure SetFixedFixedColor(Value: TColor);
 function GetFixedFixedColor: TColor;
 published
 { Published declarations }
 property FixedColor: TColor read GetFixedFixedColor
 write SetFixedFixedColor default clBtnFace;
 end;
procedure Register;

implementation
procedure TDBGridFix.SetFixedFixedColor(Value: TColor);
begin
 inherited TitleColor := Value;
 inherited FixedColor := Value;
 { Not really needed, just to be on the safe side }
end;

function TDBGridFix.GetFixedFixedColor: TColor;
begin
 Result := inherited TitleColor;
end;

procedure Register;
begin
 RegisterComponents(’Data Access’, [TDBGridFix]);
end;
end.

➤ Listing 6

creating objects or otherwise using class references,
use the function to get the type used in the DLL.

Contributed by Hallvard Vassbotn.

Delphi Compiler ‘Features’
The Delphi compiler seems to be a bit picky about the
order of units in the uses statement. There have been
many people in the comp.lang.pascal newsgroup on the
Internet reporting that they get compile errors such as:

WinCrt, MyObj;
 ^Error 85: “;” expected.

With some experimentation I’ve found that moving
WinCrt so it becomes the last unit in the list solves the
problem. The reason seems to be that WinCrt checks
for the presence of VCL by checking some signature
bytes and using a Windows handle if it finds it. The
signature and data are stored at fixed addresses in the
beginning of DSeg. I think that Borland hard-coded the
compiler to force the WinCrt unit to be loaded after any
other units to make sure the signature is written by the
VCL (Controls, actually) prior to being checked by
WinCrt.

Another ‘bug’ is that although the documentation
(the Delphi Object Language Guide downloaded from
Borland’s FTP site) states that published properties
cannot be of type real (Pascal-specific floating point
type), the compiler doesn’t complain and compiles it
fine. However, if you try to use the Object Inspector on
such a component, it will generally give you a GPF.

Contributed by Hallvard Vassbotn

TDBGrid Bug: FixedColor Is Ignored
There is a rather obvious bug in the TDBGrid data aware
grid component: the FixedColor property does not
work. In TStringGrid and TDrawGrid it works as
documented, but in TDBGrid it is non-functional.

Looking through the VCL source we found the
reason: TCustomGrid defines the FixedColor property
and assumes that any code which draws the fixed areas
will use this property. TDrawGrid and TStringGrid both
do this.

However, TCustomDBGrid (from which TDBGrid is
descended) defines another property called TitleColor
and uses this when drawing. Unfortunately this
property is defined as protected making it unavailable
for component users at both design-time and run-time.

The solution is to derive your own component and
use this instead of TDBGrid – this is shown in Listing 6.
[If you’re going to make this change, see also Brian
Long’s fix for scroll bars in TDBGrid on page 35, which you
may as well do at the same time! Looks like Borland
finished this component in a bit of a hurry... Editor]

Another bug is that the color for the lines in the grid
is hard-coded to clBtnHighlight in TDBGrid, but
TDrawGrid and TStringGrid uses FixedColor for these as
well. There doesn’t seem to be an easy way to solve
this, other than by changing the VCL source code.

Contributed by Hallvard Vassbotn.

40 The Delphi Magazine Issue 2

A Windows Desktop Canvas
Listing 7 shows the implementation of a canvas object
for the Windows desktop area. This can be useful for
screen-savers, splash-screens and programs that need
access to the desktop such as magnifier tools. On the
desktop canvas you will also see all the open windows,
not just wallpaper bitmap! The best of all is that with
these few lines of code you can use the complete set of
Delphi graphic objects on the desktop (bitmaps, pens,
brush...).

Custom Window Frames: If you want customized
windows-frames (like the popup toolbars in Microsoft
applications) you must draw to the Non-Client area of
a window, usually known as the NC. The object shown
in Listing 8 gives you a canvas to access the NC area.

Contributed by Stefan Boether, whose email address
is: 100023.275@compuserve.com

Using RES Bitmaps
If you’ve previously used Borland Pascal Windows you
will be used to handling bitmaps by creating a bitmap
resource and using LoadBitmap in your program.

Delphi uses its own resource format for bitmaps, but
the object shown in Listing 9, descended from TBitmap,
will let you use your old .RES bitmap resource files but
gives you access to all the great Delphi TBitmap
functions (conversion, file storage etc) too1 It’s very
short but it works well.

Contributed by Stefan Boether.

type
 cDesktopCanvas = class(TCanvas)
 private
 DC : hDC;
 function GetWidth:Integer;
 function GetHeight:Integer;
 public
 constructor Create;
 destructor Destroy; override;
 published
 property Width: Integer read GetWidth;
 property Height: Integer read GetHeight;
 end;

function cDesktopCanvas.GetWidth:Integer;
begin
 Result:=GetDeviceCaps(Handle,HORZRES);
end;

function cDesktopCanvas.GetHeight:Integer;
begin
 Result:=GetDeviceCaps(Handle,VERTRES);
end;

constructor cDesktopCanvas.Create;
begin
 inherited Create;
 DC:=GetDC(0);
 Handle:=DC;
end;

destructor cDesktopCanvas.Destroy;
begin
 Handle:=0;
 ReleaseDC(0, DC);
 inherited Destroy;
end;

➤ Listing 7

type
 cNCCanvas = class(TCanvas)
 private
 FDeviceContext: HDC;
 FWindowHandle : HWnd;
 function GetWindowRect:TRect;
 protected
 procedure CreateHandle; override;
 procedure FreeHandle;
 public
 constructor Create(aWindow: hWnd);
 destructor Destroy; override;
 property WindowRect: TRect read GetWindowRect;
 end;

constructor cNCCanvas.Create(aWindow: hWnd);
begin
 inherited Create;
 FWindowHandle:=aWindow;
end;

destructor cNCCanvas.Destroy;
begin
 FreeHandle;
 inherited Destroy;
end;

procedure cNCCanvas.CreateHandle;
begin
 if FWindowHandle=0 then
 inherited CreateHandle
 else begin
 if FDeviceContext = 0 then
 FDeviceContext := GetWindowDC(FWindowHandle);
 Handle := FDeviceContext;
 end;
end;

procedure cNCCanvas.FreeHandle;
begin
 Handle := 0;
 if FDeviceContext <> 0 then begin
 ReleaseDC(FWindowHandle, FDeviceContext);
 FDeviceContext:=0;
 end;
end;

function cNCCanvas.GetWindowRect:TRect;
begin
 winProcs.GetWindowRect(FWindowHandle,Result);
 with Result do begin
 Right:=Pred(Right-Left);
 Bottom:=Pred(Bottom-Top);
 Left:=0; Top:=0;
 end;
end;

➤ Listing 8

Smart IDE
As well as my office PC I also use a notebook for Delphi
development. I needed a smaller, faster Delphi installa-
tion. Often I only test small projects like streams, lists,
new components etc. For this I don’t need the OLE,
DDE, database and VBX stuff.

To save a lot of memory and resources, you can
create several different COMPLIB.DCL versions:

type
 cResBitmap = class(TBitmap)
 public
 constructor Create(aId:PChar);
 end;
constructor cResBitmap.Create(aId: PChar);
begin
 inherited Create;
 Handle:= LoadBitmap(hInstance,aId);
end;

➤ Listing 9

perhaps one for each topic you address. For example,
for testing basic stuff I only need the Standard and
Additional pages of the Component Palette, which are
registered using LIB\STDREG.PAS – now Delphi uses
less than 1Mb of memory and 8% of system resources
after startup! With this configuration I can work well
with Delphi even on a 486/33 notebook with 8Mb of
memory.

Another way to increase compilation speed is to
enable Smartdrive’s write cache. Before everyone
flames that it’s not a good idea for development plat-
forms let me say how exactly I do this. I only need this
feature for compilation and linking, so before running
the program the cache should be committed to the disk
(in case the program crashes, in which case and data
remaining in the write cache would not be written to
disk). Most disk caches act on the disk-reset interrupt,
which you can trigger with a smart program or by
pressing Ctrl-C in a DOS box. I would encourage
Borland to put this call directly into the IDE, because it
makes the compiler even faster.

Contributed by Stefan Boether.

Clipboard Object
Devotees of The Pascal Magazine may remember my
Windows Clipboard access object from Issue 4. Well,
Delphi’s clipboard support is quite good, however, it
only supports one 255 character string with the CF_TEXT
format. To overcome this, let me introduce you to the
TMemoClipboard object, which supports TStrings objects
for longer text. The object declaration is shown below
(a full example is in the MEMCLIP.LZH archive on this
issue’s free disk, in the TIPTRIX directory):

type
 TMemoClipboard = class(TClipBoard)
 private
 function GetLines: TStrings;
 procedure SetLines(Value: TStrings);
 public
 property AsLines: TStrings read GetLines
 write SetLines;
 end;

To use it you must include the MemoClip unit (which is
on the disk) in your uses list. It frees the standard global
Clipboard variable and replaces it with an instance of
TMemoClipboard. If you want to access the AsLines
property you must do a typecast of the clipboard:

Memos:= TMemoClipboard(Clipboard).AsLines

or

with Clipboard as TMemoClipoard do
 Memos:= AsLines;

Contributed by Stefan Boether.

July 1995 The Delphi Magazine 43

	Editor Shortcuts
	Nick's Favourite Tips
	Passing Variable Numbers of Parameters
	Exporting Classes From DLLs
	Delphi Compiler "Features"
	TDBGrid Bug: FixedColour Is Ignored
	A Windows Desktop Canvas
	Using RES Bitmaps
	Smart IDE
	Clipboard Object

